
 

ast month we began describing the class which will act as the basis for all of
the chess pieces we have at our disposal. If you remember, I also mentioned
something called an abstract class. This month I'll show you why an 
abstract class can be helpful in defining a specialized class hierarchy, and 
just how one goes about defining an abstract class.

 

he Next Step

So far we've defined the methods we need to describe each and every chess 
piece on the chess board. Without writing any code, let's quickly add some 
of the other general functions that will be necessary to describe any chess 
piece. For instance, each piece has a distinct way it can move on the chess 
board: a knight moves one space in one direction and two spaces in the 
perpendicular direction. Since each of our CChessPiece objects has a position 
on the board (the mPiecePosition data member), we can ask a chess piece if it 
can move to another position. We will define another function called ValidMove
which specifies whether or not a chess piece can move to a spot on the 
board based on its current position. When we ask ourselves how such a 
function should reply (i.e. what is its return value?), we must realize that 
ValidMove gives us a yes or no answer. Yes, I can move there. No, I can't move 
there. We can easily match a standard C++ data type to that kind of 
answer:    bool (or Boolean in some compilers).

        Boolean
        CChessPiece::ValidMove(SBoardPosition inToWhere)
                

So now we've added another function to our class. Now, on to the abstract!

 



bstraction

About this abstract thing. What we've been defining so far in the CChessPiece 
class is an abstract chess piece. The functions we add are generalized to 
apply to any kind of piece. However, there is no "general piece" that exists 
in real life (yeah, a king is commander in chief, but he's still no general!). In 
other words, if we can't actually have a generalized chess piece in real life, 
why should we really be able to create one on our virtual chess board?    An 
abstract class allows us to define the functionality of a set of child classes, 
but it is set up in such a way that a program cannot use the abstract base 
class.

Creating abstract classes depends on the use of virtual class functions. There 
are two options for the functions in a class hierarchy. Functions can be 
inherited by child classes as-is, or they can be inherited and re-implemented
by the child class. Any function which will be inherited as-is is in its final 
form in the parent class; calling that method for that class and every child 
class uses that function. Consider our ValidMove method. We know that every 
child class will have a ValidMove function; however, we also know that every 
kind of chess piece has a different pattern to its movement. So each child 
class will have to define its own ValidMove method. In other words, we know 
that each child class must have a ValidMove method, and that the ValidMove 
function in CChessPiece is not the same function which the child classes will 
use. Thus, ValidMove will be defined as virtual.

        class CChessPiece
        
            public:
                                                                CChessPiece();
                virtual                                  ~CChessPiece();
                
                virtual SChessPieceType GetChessPieceType();
                
                virtual Boolean                  ValidMove(SBoardPosition inToWhere);

            protected:
                SBoardPosition                    mPiecePosition;
        ;

That's the first step in developing a class hierarchy: decide what functions 
should be inherited as-is and which will be re-implemented in subsequent 
classes. The CChessPiece definition above shows this.

Finally, in creating an abstract class, we need to make sure a program 
cannot use it; only subclasses of CChessPiece are usable. How do we 
accomplish this? The answer will probably make you say "duh!" In our 
current definition of CChessPiece the constructor function is marked public. 



What if we change it to private? Remember, private members of a class can only
be accessed by that class. So if the constructor is private, no piece of 
programming code can actually create an instance of that class!

 

he New CChessPiece

Now that we know about abstract classes, our generalized chess piece looks
like this:

        class CChessPiece
        
            public:
                virtual                                  ~CChessPiece();
                
                virtual SChessPieceType GetChessPieceType();
                
                virtual Boolean                  ValidMove(SBoardPosition inToWhere);

            protected:
                SBoardPosition                    mPiecePosition;

            private:
                                                                CChessPiece();
        ;

Now that we have a "template" to the creation of our class hierarchy, we 
can begin to code for individual chess pieces. Next month…

                 Jeff Frey
                    jeff@applewizards.net

 


